.publications


Authors: Lukas Boborzi, Johannes Bertram, Roman Schniepp, Julian Decker, Max Wuehr

Clinical Whole-Body Gait Characterization Using a Single RGB-D Sensor

– 2025 – Sensors, vol. 25, p. 333

Abstract : Instrumented gait analysis is widely used in clinical settings for the early detection of neurological disorders, monitoring disease progression, and evaluating fall risk. However, the gold-standard marker-based 3D motion analysis is limited by high time and personnel demands. Advances in computer vision now enable markerless whole-body tracking with high accuracy. Here, we present vGait, a comprehensive 3D gait assessment method using a single RGB-D sensor and state-of-the-art pose-tracking algorithms. vGait was validated in healthy participants during frontal- and sagittal-perspective walking. Performance was comparable across perspectives, with vGait achieving high accuracy in detecting initial and final foot contacts (F1 scores > 95%) and reliably quantifying spatiotemporal gait parameters (e.g., stride time, stride length) and whole-body coordination metrics (e.g., arm swing and knee angle ROM) at different levels of granularity (mean, step-to-step variability, side asymmetry). The flexibility, accuracy, and minimal resource requirements of vGait make it a valuable tool for clinical and non-clinical applications, including outpatient clinics, medical practices, nursing homes, and community settings. By enabling efficient and scalable gait assessment, vGait has the potential to enhance diagnostic and therapeutic workflows and improve access to clinical mobility monitoring. … read on


Authors: Nina Ellrich, Kasimir Niermeyer, Daniela Peto, Julian Decker, Urban M Fietzek, Sabrina Katzdobler, Günter U Höglinger, Klaus Jahn, Andreas Zwergal, Max Wuehr

Precision Balance Assessment in Parkinson’s Disease: Utilizing Vision-Based 3D Pose Tracking for Pull Test Analysis

– 2024 – Sensors, vol. 24, p. 3673

Abstract : Postural instability is a common complication in advanced Parkinson’s disease (PD) associated with recurrent falls and fall-related injuries. The test of retropulsion, consisting of a rapid balance perturbation by a pull in the backward direction, is regarded as the gold standard for evaluating postural instability in PD and is a key component of the neurological examination and clinical rating in PD (e.g., MDS-UPDRS). However, significant variability in test execution and interpretation contributes to a low intra- and inter-rater test reliability. Here, we explore the potential for objective, vision-based assessment of the pull test (vPull) using 3D pose tracking applied to single-sensor RGB-Depth recordings of clinical assessments. The initial results in a cohort of healthy individuals (n = 15) demonstrate overall excellent agreement of vPull-derived metrics with the gold standard marker-based motion capture. Subsequently, in a cohort of PD patients and controls (n = 15 each), we assessed the inter-rater reliability of vPull and analyzed PD-related impairments in postural response (including pull-to-step latency, number of steps, retropulsion angle). These quantitative metrics effectively distinguish healthy performance from and within varying degrees of postural impairment in PD. vPull shows promise for straightforward clinical implementation with the potential to enhance the sensitivity and specificity of postural instability assessment and fall risk prediction in PD. … read on


Authors: Lukas Boborzi, Julian Decker, Razieh Rezaei, Roman Schniepp, Max Wuehr

Human activity recognition in a free-living environment using an ear-worn motion sensor

– 2024 – Sensors, vol. 24, p. 2665

Abstract : Human activity recognition (HAR) technology enables continuous behavior monitoring, which is particularly valuable in healthcare. This study investigates the viability of using an ear-worn motion sensor for classifying daily activities, including lying, sitting/standing, walking, ascending stairs, descending stairs, and running. Fifty healthy participants (between 20 and 47 years old) engaged in these activities while under monitoring. Various machine learning algorithms, ranging from interpretable shallow models to state-of-the-art deep learning approaches designed for HAR (i.e., DeepConvLSTM and ConvTransformer), were employed for classification. The results demonstrate the ear sensor’s efficacy, with deep learning models achieving a 98% accuracy rate of classification. The obtained classification models are agnostic regarding which ear the sensor is worn and robust against moderate variations in sensor orientation (e.g., due to differences in auricle anatomy), meaning no initial calibration of the sensor orientation is required. The study underscores the ear’s efficacy as a suitable site for monitoring human daily activity and suggests its potential for combining HAR with in-ear vital sign monitoring. This approach offers a practical method for comprehensive health monitoring by integrating sensors in a single anatomical location. This integration facilitates individualized health assessments, with potential applications in tele-monitoring, personalized health insights, and optimizing athletic training regimes. … read on


Authors: Sandra Kollmansperger, Julian Decker, Sebastian Berkes, Klaus Jahn, Max Wuehr

A mobile electrical stimulator for therapeutic modulation of the vestibular system—design, safety, and functionality

– 2024 – Frontiers in Neurology, vol. 15, p. 1502204

Abstract : Low-intensity noisy galvanic vestibular stimulation (nGVS) is a promising non-invasive treatment for enhancing vestibular perceptual performance and postural control in patients with chronic vestibular hypofunction. However, this approach has so far been studied mainly under laboratory conditions. Evidence indicates that continuous application of nGVS in daily life is necessary for it to be effective. To address this need, we have developed a mobile nGVS stimulator and conducted a series of pilot studies to evaluate its safety, tolerability, functionality, and therapeutic effects. The device is a lightweight, compact, and portable AC stimulator featuring a user-friendly interface for the individualized adjustment of nGVS parameters. It includes an integrated motion sensor that automatically activates stimulation during body movement and deactivates it during inactivity, optimizing its practical use in real-world settings. The stimulator adheres to strict safety standards and, in initial long-term use, has exhibited only mild side effects (e.g., skin irritation and headaches), likely attributable to the current electrode placement, which requires further optimization. As expected, the device consistently elicits known vestibular sensorimotor reflex responses in healthy individuals. Importantly, further pilot studies in healthy participants demonstrate that the device can reliably replicate known facilitating effects on vestibular perception and postural control. Together, these findings suggest that this mobile stimulation device can facilitate the translation of nGVS into therapeutic everyday use. … read on


Author: Julian Decker

Kopf-Rumpf Koordination bei Gesunden im Altersverlauf und bei Patienten mit bilateraler Vestibulopathie

– 2023

Abstract : Die vorliegende Arbeit befasst sich mit dem dynamischen System der Kopf-Rumpf Koordination verschiedener Altersgruppen sowie Patienten mit einer bilateralen Vestibulopathie bei unterschiedlichen Ganggeschwindigkeiten und kognitivem Dual Task Paradigma. Ziel der Arbeit ist es zu untersuchen, in welcher Weise sich die Koordination in den Altersgruppen bei Gesunden sowie in der Gruppe der Patienten mit bilateraler Vestibulopathie (BVP) unterscheidet. Da sowohl das vestibuläre als auch das visuelle System direkt hiervon abhängig sind, kommt dieser Koordinationsleistung beim Gehen und der posturalen Kontrolle eine wichtige Funktion zu. Von besonderem Interesse ist es einerseits zu messen, ob bei allen Gruppen die Kopfbewegung bzw. die einwirkenden Kräfte sich ähneln und andererseits zu untersuchen, ob Hinweise auf kompensatorische Mechanismen zu finden sind. Hierzu wurde zunächst eine geeignete Messmethode mittels marker-basiertem 3-D Motion Tracking und kombinierten Inertialsensoren etabliert sowie ein reliables Versuchsprotokoll definiert. Anschließend wurden für die unterschiedlichen gesunden Altersgruppen (20-40 Jahre, 40-60 Jahre, 60-80 Jahre) sowie für die Gruppe mit BVP, Probanden rekrutiert. Erfasst wurden hierbei die Rumpf-Kopf-Position, die Beschleunigung und die Drehgeschwindigkeit der Rumpf-/Kopfpartie. Die vorliegende Arbeit konnte zeigen, dass Patienten mit einer BVP in Zusammenschau aller gemessenen Parameter sowie im Vergleich mit vorangegangenen Studien Kompensationsmechanismen entwickeln, um ihr sensorisches Defizit auszugleichen. Lediglich in wenigen … … read on


Authors: Julian Decker, S Kollmansperger, K Jahn, M Wuehr, J Decker

A non-invasive vestibular prosthesis by means of online, low-intensity noisy galvanic vestibular stimulation (nGVS)

Abstract : Chronic loss of vestibular sensation (bilateral vestibulopathy) results in sustained postural instability during standing and walking, especially in situations where other sensory sources are not available, eg, while walking in darkness or on uneven ground [9]. Consequently, patients with limited vestibular feedback suffer from reduced mobility and live with an increased risk of falling [11]. Disturbed vestibular function is not limited to peripheral bilateral vestibulopathy (BVP) but can also be caused by central dysfunction in neurodegenerative disorders such as Parkinson’s disease [8]. Current therapeutic options in vestibular hypofunction are mainly based on vestibular rehabilitation therapy with training of balance and eye-head coordination by physical therapists (Fig. 1A). However, in most cases the training only results in partial relief of symptoms [10]. Two new therapeutic alternatives are currently under development that directly target vestibular dysfunctions. The first approach consists of a vestibular implant (Fig. 1B), which has shown promising effects in alleviating postural symptoms and other signs of vestibular hypofunction in selected patients [1]. Nevertheless, the advantages of such an invasive vestibular implant must be carefully balanced against the surgical risks and potential side effects. The second new therapeutic approach aims to amplify residual vestibular function in patients through non-invasive noise stimulation of the vestibular periphery (Fig. 1C)[12]. Non-invasive noisy galvanic vestibular stimulation (nGVS) is a technique using the application of weak sensory noise through subthreshold electrical stimulation to enhance vestibular … … read on